Geometry

2.2A Inductive Reasoning

Conjecture and Inductive Reasoning

Conjecture

• statement based on

Inductive Reasoning

• First find a ______ in _____ cases

• Second write a ______ for the _____ case

Sketch the fourth figure in the pattern

Describe the pattern in the numbers 1000, 500, 250, 125, ... and write the next three numbers in the pattern

Given the pattern of triangles below, make a conjecture about the number of segments in a similar diagram with 5 triangles

Make and test a conjecture about the product of any two odd numbers

Proving by Inductive Reasoning

The only way to show that a conjecture is true is to ______

To show a conjecture is false is to show ______ where it is false

This case is called a _______

Find a counterexample to show that the following conjecture is false

The value of x^2 is always greater than the value of x